Dr. Ankita, Assistant Professor, Chemistry

Month	Week	BSc I BT IC	BSc II BT IC	BSc III BT OC + BSc III M Sec-B OC
	1			
January	2	Chemistry of Noble Gases	Lanthanides	Heterocyclic compounds-I
	3	Hydrogen bonding		
	4	& Van der Waals forces		
	5			
	1			
	2	Metallic bond & semiconductors	Actinides	Organosulphur compounds
February	3			Synthetic polymers
	4	Assignment	Assignment	Assignment
	5			
	1			
	2	p-Block elements Boron family	Theory of qualitative & quantitative analysis-I	Heterocyclic compounds-II

March	3	Carbon famiy Nitrogen family		Organic synthesis via enolates
	4			Unit test
	5	Unit test	Unit test	
	1			
	2	- p-Block elements Oxygen family	quantitative analysis-II	Amino acids, peptides & proteins
Aprii	3	Halogen Jamily		
	4	Devision	Davision	Davision
	5	_ Kevision	Kevision	Kevision
				1

Dr. Deepika, Extension Lecturer, Chemistry

Month	Week	BSc II BT PC	BSc III NM (A+B) PC	BSc III BT PC
	1			
	2	I hermodynamics	Electronic Spectrum	Electronic Spectrum
January	3	-		
	4	-		
	5	-		
	1		Dhata ah a miatri i	
	2	IV	Photochemistry	Photochemistry
February	3			
	4	Assignment	Assignment	Assignment
	5	0	0	
	1	Electrochemistry	Dilute Solutions and	Dilute Solutions and Colligative Properties
	2		Colligative Properties	Diffute Solutions and Configutive 1 roperfiles

March	3			
	4	-		Unit test
	5	Unit test	Unit test	
	1	Floatroabamiatry	Dhaaa Equilibrium	Dharo Fauilibuium
	2	IV	Filase Equilibrium	Fnase Equilibrium
April	3	-		
	4	Davision	Davisian	Davision
	5	- Nevision	Revision	Κενιδιοπ

Sh. Ankit Kaushik, Assistant Professor, Chemistry

Month	Week	BSc II BT	BSc II Med (A+B)	BSc III Med (A)
	1			
January	2	Spectroscopy	Infrarea Spectroscopy	Heterocyclic compounds-1
	3	-		
	4	-		
	5	-		
	1	4 .		
	2	Amines	Amines	Organosulphur compounds
February	3	Diazonium salt	Diazonium salt	Synthetic polymers
	4	-	Assignment	Assignment
	5	Assignment	Assignment	
	1			
	2	Diazonium salt	Diazonium salt	Heterocyclic compounds-11

March	3	Nitro group	Nitro group	Organic synthesis via enolates
	4	Unit test	Unit test	Unit test
	5			
	1	Aldehydes and	Aldehydes and ketones	Amino acide Pantidas & protain
	2	ketones and	Aldenyues und kelones	Amino ucius, I epilues & prolein
April	3			
	4	Pavision	Pavision	Pavision
	5	Nevision	Revision	Kevision

Department:- Chemistry Chemistry

Class:- B.Sc IV (Pass Course) Physical

Month	1st Week	2nd Week	3rd Week	4th Week
January	The second law of thermodynamics. Need of the law, different definitions of the law, Carnot Cycle, and its efficiency.	Carnot theorem, Thermodynamic scale of temperature, Concept of entropy, entropy as a state function of V and T, entropy as a function of P and T.	Entropy change in physical processes. Clausius inequality, Entropy as criteria of spontaneity and equilibrium. Entropy change in ideal gases and mixing of gases, work function, Gibb, 's free energy function.	Gibbs function (G) and Helmholtz function (A) as thermodynamic function, Criteria of spontaneity of reversible processes in terms of enthalpy change, entropy change, work function and free energy function.
February	Variation of G and A with P,V and T. Gibb Helmholtz equation and its application, Clausius- Clapeyron equation Nernst heat theorem. Third law of thermodynamics.	Electrolytic and Galvanic cells, reversible & Irreversible cells , conventional Representation of electrochemical cells. EMF of cell and its measurement. Revision & Minor Test.	Weston standard cell, activity and activity coefficients. Calculation of thermodynamic quantities of cell reaction (G, H & K). Types of reversible electrodes – metal metal ion gas electrode, metal – insoluble salt- anion and redox electrodes.	Electrode Reactions, Nernst equations, derivation of cell EMF and single electrode potential.
March	Standard Hydrogen electrode, reference electrodes, standard electrodes potential, sign conventions, electrochemical series and its applications.	Concentration cells with and without transference, liquid junction potential.	Application of EMF measurement i.e. valency of ions, solubility product, activity coefficient.	Revision & Minor Test.

April	Potentiometric titration base and redox).	(acid-	Determination of pH using Hydrogen electrode, Quinhydrone electrode and glass electrode by potentiometric methods.	Revision & Minor Test.	
-------	---	--------	---	------------------------	--

Class:- B.Sc IV (Bio-Tech) Physical

Month	1st Week	2nd Week	3rd Week	4th Week
January	The second law of thermodynamics. Need of the law, different definitions of the law, Carnot Cycle, and its efficiency.	Carnot theorem, Thermodynamic scale of temperature, Concept of entropy, entropy as a state function of V and T, entropy as a function of P and T.	Entropy change in physical processes. Clausius inequality, Entropy as criteria of spontaneity and equilibrium. Entropy change in ideal gases and mixing of gases, work function, Gibb, 's free energy function.	Gibbs function (G) and Helmholtz function (A) as thermodynamic function, Criteria of spontaneity of reversible processes in terms of enthalpy change, entropy change, work function and free energy function.
February	Variation of G and A with P,V and T. Gibb Helmholtz equation and its application, Clausius- Clapeyron equation Nernst heat theorem. Third law of thermodynamics.	Electrolytic and Galvanic cells, reversible & Irreversible cells , conventional Representation of electrochemical cells. EMF of cell and its measurement. Revision & Minor Test.	Weston standard cell, activity and activity coefficients. Calculation of thermodynamic quantities of cell reaction (G, H & K). Types of reversible electrodes – metal metal ion gas electrode, metal –insoluble salt- anion and redox electrodes.	Electrode Reactions, Nernst equations, derivation of cell EMF and single electrode potential.
March	Standard Hydrogen electrode, reference electrodes, standard electrodes potential, sign conventions, electrochemical series and its applications.	Concentration cells with and without transference, liquid junction potential.	Application of EMF measurement i.e. valency of ions, solubility product, activity coefficient.	Revision & Minor Test.

Department:- Chemistry Chemistry

April	Potentiometric titration (acid- base and redox).	Determination of pH using Hydrogen electrode, Quinhydrone electrode and glass electrode by potentiometric methods.	Revision & Minor Test.	
-------	---	---	------------------------	--

Department:- Chemistry Chemistry

Class:- B.Sc IV (Hons) Physical

Month	1st Week	2nd Week	3rd Week	4th Week
January	Second law of thermodynamics. Need of the law, different definitions of the law, Carnot Cycle and its efficiency. Carnot theorem, Thermodynamic scale of temperature.	Concept of entropy, entropy as a state function of V and T, entropy as a function of P and T. Entropy change in physical processes. Clausius inequality, Entropy as criteria of spontaneity and equilibrium. Entropy change in ideal gases and mixing of gases	work function, Gibb,s free energy function. Gibbs function (G) and Helmholtz function (A) as thermodynamic function, Criteria of spontaneity of reversible processes in terms of enthalpy change, entropy change, work function and free energy function.	Variation of G and A with P,V and T. Gibb Helmholtz equation and its application, Clausius- clapeyron equation Nernst heat theorem. Third law of thermodynamics and its applications.
February	Partial molar quantities. Chemical potential. Gibb's Duhem equation. Gibb,s adsorption equation and its application, variation of chemical potential with temperature and pressure.	Redox reactions, electrolytic and galvanic cells. Reversible and irreversible cells reversible electrodes, types of reversible electrodes. Revision & Minor Test.	Metal electrodes, gas metal electrode, metal insoluble salt on ions and redox electrodes. Electrode reactions, cell voltage, function of salt bridge, electrode potential and its determination.	Standard hydrogen electrode, reference electrode, standard cell, sign convention.
March	Electrochemical series and its significance. Nernst equation for a reversible electrode and cell. Calculation of thermodynamic quantities of a cell reaction 'G, 'H and K.	Polarization over potential and hydrogen over voltage. Definition of pH. Determination of pH using hydrogen, quinhydron and glass electrode by potentiometric method.	Experimental methods of chemical kinetics: conductometric , potentiometric , optical method ,polarimetery and spectrophotometer.	Theories of reaction rates, effect of temperature on rate of reaction. Simple collision theory based upon transition state, hard sphere model theory (equilibrium hypothesis).

April	Buffers solution, Buffer action, Henderson - Hazel equation. Hydrolysis of salts, corrosion, types, theories and methods of controlling	Expression for the rate constants based on equilibrium constant their thermodynamic aspect	Revision & Minor Test.	Revision & Minor Test.
	it.			

Department:- Chemistry Chemistry

Class:- B.Sc IV (Hons) Physical

Month	1st Week	2nd Week	3rd Week	4th Week
January	Planck's law, heat capacity of solids, Bohr's model of hydrogen atom (derivation excluded) and its defects. Compton effect.	Molecular orbital theory, basic idea, criteria for forming molecular orbital from atomic orbitals. Construction of molecular orbital by linear combination of atomic orbital ,- H ₂ ion.	Calculation of energy levels from wave function, physical picture of bonding and antibonding wave function.	Concept of π , π^* orbitals and their characteristics. Hybrid orbital (Sp. Sp ₂ and Sp ₃ .).
February	Revision & Minor Test.	Calculation of co-efficients of atomic orbitals used in these hybrid orbitals.	Introduction of valence bond model of H ₂ , Comparison of molecular orbital and valence bond Model.	HomogeneousandHeterogeneouscatalysis,Enzyme catalysis.Revision & Minor Test.
March	Theory of catalysis - Intermediate compound formation theory, adsorption theory.	General characteristics of catalysis, positive catalysis, negative catalysis, autocatalysis, shape selective catalysis.	Classification of chromatographic methods, principle of differential migration, nature of differential migration.	Adsorption phenomenon, nature of adsorbent, solvent system. Rf values, application.
April	Basic principle of partition, paper, column, thin layer liquid-liquid partition and high performance.	Liquid chromatography, paper & column, thin layer liquid-liquid partition and high- performance liquid chromatography	Revision & Minor Test.	

Department:- Chemistry Chemistry

Class:- B.Sc VI (Pass Course) Physical

Month	1st Week	2nd Week	3rd Week	4th Week
January	Concept of potential energy curves for bonding and antibonding molecular orbitals, qualitative description of selection rules.	Franck-Condon principle.	Qualitative description of sigma and pie and n molecular orbital (MO) their energy level and respective transitions.	Interaction of radiation with matter, the difference between thermal and photochemical processes. Laws of photochemistry: Grotthus- Drapper law, Stark-Einstein law (law of photochemical equivalence)
February	Jablonski diagram depicting various processes occurring in the excited state, qualitative description of fluorescence, phosphorescence.	Non-radiative processes (internal conversion, intersystem crossing), quantum yield. Revision & Minor Test.	Photosensitized reactions-energy transfer processes (simple examples). Ideal and non-ideal solutions.	Methods of expressing concentrations of solutions, activity and activity coefficient. Dilute solution,Colligative properties, Raolut's law, relative lowering of vapour pressure, molelcular weight determination.
March	Osmosis law of osmotic pressure and its measurement, determination of molecular weight from osmotic pressure. Elevation of boiling point and depression of freezing point.	Thermodynamic derivation of relation between molecular weight and elevation in boiling point and depression in freezing point. Experimental methods for determining various colligative properties.	Abnormal molar mass, degree of dissociation and association of solutes.	Statement and meaning of the terms-phase component and degree of freedom.

	Thermodynamic derivation of		
April	Gibbs phase rule, phase equilibria of one component system-	Phase equilibria of two- component systems solid-	Simple eutectic Example Pb-Ag system, desilerisation of lead
	Example-water and Sulphur	liquid equilibria.	Revision & Minor Test.
	systems.		

TEACHING PLAN 2023-2024 (Even SEMESTER) Department:- Chemistry

Class:-Bsc 3rd H, B.sc 3rdNM..,B.sc 1st Nm'A'

Month	1st Week	2nd Week	3rd Week	4th Week
		positions of signals and chemical shift, shielding and deshielding of protons, proton counting, splitting of signals and coupling constants,	1,1-dibromoethane, 1,1,2- tribromoethane, ethanol, acetaldehyde, ethyl acetate,	Simple problems on PMR spectroscopy for structure determination of organic compounds.
		magnetic equivalence of protons.Discussion of PMR spectra of the molecules: ethyl bromide, n -propyl bromide, isopropyl bromide,	toluene, benzaldehyde, acetophenone,p-anisidine and p- nitrotoluene.	Doubt class
	B.Sc III(H), P-2 <u>Heterocyclic</u> <u>Compounds Introduction</u> : Molecular orbital picture and aromatic characteristics of pyrrole, furan,	Methods of synthesis and chemical reactions with particular emphasis on the mechanism of electrophilic substitution.	Mechanism of nucleophilic substitution reactions in pyridine derivatives. Comparison of basicity of pyridine, piperidine and pyrrole.	Introduction to condensed five and six- membered heterocycles. Prepration and reactions of indole, quinoline and isoquinoline
	thiophene and pyridine	, the PMR spectrum, number of signals, peak areas, equivalent and	Fisher indole synthesis, Skraup synthesis and Bischler-Napieralski synthesis.	Mechanism of electrophilic substitution reactions of indole, quinoline and isoquinolin
	NMR Spectroscopy-I Principle of nuclear magnetic resonance,.	nonequivalent protons positions of signals and chemical	chemical shift, shielding and deshielding of protons, proton counti	splitting of signals and coupling constants, magnetic equivalence of protons.
	Mass Spectroscopy: Introduction, instrumentation, mass spectrum,	recognition of molecular ion peak, fragmentation pattern of alkanes, alkenes and benzene.	Nomenclature, structural features, Methods of formation and chemical reactions of thiols,	sulphaguanidine. Synthetic detergents alkyl and aryl sulphonates.
	determination of molecular formula, parent peak and base peak,		thioethers, sulphonic acids, sulphonamides.	Doubt class.

Paper -2, 1.Organo Phosphorus Compounds: Nomenclature, Trivalent phosphorus compounds - trialkyl and triaryl phosphine	organic phosphoranes, phosphorus ylides, wittig reaction. Biological role of phosphorus	Polymers: Brief history of macromolecular Science,Natural polymers: Starch, cellulose silk resin	methods of polymerisation - bulk suspension, emulsion and solution.
Penta valent phosphorus compounds,		.Classification, types of pol ymerisation: Addition, condensation and their mechanisms	Phenol formaldehydes resins. (II) Urea formaldehydes resins. (III) Polyesters (IV) Polyamides. (V) Natural and synthetic rubbers.
Discuss ion of PMR spectra of the molecules: e	e, isopropyl bromide, 1,1- dibromoethane, 1,1,2- tribromoethane, ethano	acetaldehyde, ethyl acetate, toluene, benzaldehyde and acetophenone.	Simple problems on PMR spectroscopy for structure determination of organic compounds
Carbohydrates: Classification and nomenclature. Monosaccharides, mechanism of osazone formation,	interconversion of glucose and fructose, chain lengthening and chain shortening of aldoses.	Conversion of glucose into mannose. Formation of glycosides, ethers and esters.	Open chain and cyclic structure of D(+)-glucose & D(-) fructose. Mechanism of mutarotation. Structures of ribose and deoxyribose.
	Configuration of monosaccharides. Erythro and threo diastereomers.	Determination of ring size of glucose and fructose.	An introduction to disaccharides (maltose, sucrose and lactose) and
Paper-2 © 1.Organic Synthesis via Enolates Acidity of α -hydrogens, alkylation of diethyl malonate and ethyl acetoacetate.	Keto-enol tautomerism of ethyl acetoacetate.	2.Synthetic Dyes Colour and constitution (electronic concept). Classification of dyes.	Congo red, Malachite green, Crystal violet,
Synthesis of ethyl acetoacetate: the Claisen condensation	Alkylation of 1,3-dithianes. Alkylation and acylation of enamines	Chemistry and synthesis of Methyl orange,	Phenolphthalein, Fluorescein, Alizarin and Indigo
Simple problems on PMR spectroscopy for structure determination of organic compounds			

rconversion of glucose and fructose, chain lengthening and chain shortening of aldoses. Configuration of monosaccharides	Erythro and threo diastereomers. Conversion of glucose in to mannose. Formation of glycos ides, ethers and esters	Determination of ring size of glucose and fructose. Open chain and cyclic structure of D(+)-glucose & D(-) fructose.	Mechanism ofmutarotation. Structures of ribose and deoxyribose.
Organometallic Compounds Organomagnesium compounds: the Grignard reagents-formation, structure and chemical reactions.	Organolithium compounds: formation and chemical reactions	Organo cadmium compounds: formation and chemical reactions.	Doubt class
Paper-2 (D): Classification, structure and stereochemistry of amino acids	Preparation and reactions of α -amino acids.	Peptide structure determination, end gro up analysis, selective hydrolysis of peptides.	Structures of peptides and proteins. Levels of protein structure. Protein denaturation/renaturation. Purines and pyrimidines: Introduction to purines andpyrimidines,
Acid- base behavior, isoelectric point and electrophoresis.	Structure and nomenclature of peptides and proteins. Classification of proteins.	Classical peptide synthesis, solid – phase peptide synthesis.	preparation and reactions of adenine, guanine, cytosine, uracil, thymine, tautomerism in purines and pyrimidines. Nucleic acids: introduction. Constituents of nucleic acids. Ribonucleosides and ribonucleotides. The double helical structure of DNA.
1. Carbohydrates-II An introduc tion to disaccharides (maltose, sucrose and lactose)	polysaccharides (starch and cellulose) without involving structure determination.	. Organometallic Compounds Organomagnesium compounds: the Grignard reagents-formation, structure and chemical reactions	Organozinc compounds: formation and chemical reactions. Organolithium compounds: formation and chemical reactions
		structure and chemical reactions	formation and chemical reactions

Month	Week	BSc III (H)	BSc II(M) Sec-A&B	BSc III M Sec-A&B
	1			
January	2			Organometallic Chemistry
	3	Analytical chemistry	Lanthanides	
	4			
	5			
	1			
	2	Chromatography	Actinides	Acids and bases & HSAB concept
February	3	Solvent Extraction		Assignment
	4	Assignment	Assignment	
	5		Assignment	
	1	Less Freeheure		
	2	Ion Exchange	analysis-I	Bioinorganic Chemistry

March	3 4	Organic Reagents in inorganic analysis		Unit test
	5	Unit test	Unit test	
	1			
	2	Inorganic polymers	Theory of qualitative & quantitative	Silicones and phosphazenes
Anril	2		analysis-II	
Артп	3			
	4			
	=	Revision	Revision	Revision
	5			

Dr. Pramila Extension lecturer Chemistry

Month	Week	BSc 1 st BT,Med.'B'	BSc 2 nd Hons., 2 nd NM.'B'
	1	Introduction of alkanes	Introduction of amines
January	2	- Reaction of alkenes	Chemical reactions of amines
	3	Chemical reactions of alkenes	
	4		
	5		
	1	Arenes and aromaticity	IR absorption spectroscopy
	2	Arenes and aromaticity	Diazonium salts
February	3		
	4		
	5		
	1	Dienes classification	Diazonium salts
	2	Aikyenes	

March	3 4	Assignment	Assignment
	5		
	1	Unit test	Unit test
	2	Aikyi ana aryi nailaes	Aldenydes und kelons
April	3		
	4	Davision	Pavision
	5	Αενιδιοπ	Λενιδιοπ

Month	Week	BSc I Nm sec A,B	BSc I med sec A	BSc 1st chem hons.
	1	Chemical kinetics 1	Chamical kinatics 1	Chemical kinetics
	2	Chemical Kinelics-1	Chemical kinelics-1	
January	3			
	4			
	5			
	1	Chaminal kinatian 2	Chamical Lingting 2	Flaatua aha miatuu 4
	2	Chemical kinetics-2	Chemical kinetics-2	Electrochemistry-1
February	3			
	4	Assignment	Assignment	Assignment
	5		Assignment	
	1			

	2	Electrochemistry -1	Electrochemistry-1	Electrochemistry_2
March	3			
	4	Unit test		Unit test
	5	-	Unit test	
	1	Electrochemistry 1	Electrochemistry_1	Thermochemistry
	2		Liechochennishy-1	memochemistry
April	3	-		
	4	Revision	Revision	Revision
	5			

Month	Week	BSc II Hons IC	BSc III Hons OC	BSc III NM Sec-A+ B IC	
	1		Turrantila		
	2	elements	Terpenolas	Organometallic Chemistry	
January	3				
	4	Chemistry of Actinids			
	5	-			
	1	Chamistry of clamouts of gooond	Dostinidas	Loids and Dass	
	2	and third transition series	1 esticides	Actus unu buse,	
February	3			HSAB Concept	
	4	Assignment			
	5		Assignment	Assignment	
	1	Conougl Principles of Matallina	Vitamina	Pioinouganie Chamistry	
	2	General Frinciples of Melallurgy	v namins	Bioinorganic Chemistry	

March	3 4	Unit tost	Harmones	
	5		Unit test	Unit test
	1	Isopolyacids of Mo and W	411 1 • 1	0.1.
	2	Acids and Base	Alkaloids	Silicones
April	3			Phosphazenes
	4	Revision	Revision	Revision
	5			

Month	Week	BSc 1 st Med.'A',NM -A & Hons	BSc 2 nd NM-A
	1	Introduction of alkanes	Introduction of amines
	2	Reaction of alkenes	Chemical reactions of amines
January	3	Chemical reactions of alkenes	
	4		
	5		
	1	Arenes and aromaticity	IR absorption spectroscopy
	2	Arenes and aromaticity	Diazonium salts
February	3		
	4		
	5		
	1	Dienes classification	Diazonium salts
	2	Aikyenes	
March	3	Assignment	Assignment

	4		
	5		
	1	Unit test	Unit test
April	2	Aikyi and aryi nandes	Aldenydes and ketons
	3		
	4	Pavisian	Povision
	5		

Department:- Chemistry Physical Chemistry

Class:- B.Sc IVth sem (Pass Course)

Month	1st Week	2nd Week	3rd Week	4th Week
January	The second law of thermodynamics. Need of the law, different definitions of the law, Carnot Cycle, and its efficiency.	Carnot theorem, Thermodynamic scale of temperature, Concept of entropy, entropy as a state function of V and T, entropy as a function of P and T.	Entropy change in physical processes. Clausius inequality, Entropy as criteria of spontaneity and equilibrium. Entropy change in ideal gases and mixing of gases, work function, Gibb, 's free energy function.	Gibbs function (G) and Helmholtz function (A) as thermodynamic function, Criteria of spontaneity of reversible processes in terms of enthalpy change, entropy change, work function and free energy function.
February	Variation of G and A with P,V and T. Gibb Helmholtz equation and its application, Clausius- Clapeyron equation Nernst heat theorem. Third law of thermodynamics.	Electrolytic and Galvanic cells, reversible & Irreversible cells , conventional Representation of electrochemical cells. EMF of cell and its measurement. Revision & Minor Test.	Weston standard cell, activity and activity coefficients. Calculation of thermodynamic quantities of cell reaction (G, H & K). Types of reversible electrodes – metal metal ion gas electrode, metal – insoluble salt- anion and redox electrodes.	Electrode Reactions, Nernst equations, derivation of cell EMF and single electrode potential.
March	Standard Hydrogen electrode, reference electrodes, standard electrodes potential, sign conventions, electrochemical series and its applications.	Concentration cells with and without transference, liquid junction potential.	Application of EMF measurement i.e. valency of ions, solubility product, activity coefficient.	Revision & Minor Test.

April	Potentiometric titration base and redox).	(acid-	Determination of pH using Hydrogen electrode, Quinhydrone electrode and glass electrode by potentiometric methods.	Revision & Minor Test.	
-------	---	--------	---	------------------------	--

Class:- B.Sc IV th sem (Bio-Tech)

Month	1st Week	2nd Week	3rd Week	4th Week
January	The second law of thermodynamics.	Carnot theorem,	Entropy change in physical	Gibbs function (G) and
	Need of the law, different	Thermodynamic scale of	processes. Clausius inequality,	Helmholtz function (A) as
	definitions of the law, Carnot Cycle,	temperature, Concept of	Entropy as criteria of spontaneity	thermodynamic function,
	and its efficiency.	entropy, entropy as a state	and equilibrium. Entropy change in	Criteria of spontaneity of
		function of V and T, entropy as a	ideal gases and mixing of gases,	reversible processes in terms of
		function of P and T.	work function, Gibb, 's free energy	enthalpy change, entropy
			function.	change, work function and free energy function.
February	Variation of G and A with P,V and T. Gibb Helmholtz equation and its application, Clausius- Clapeyron equation Nernst heat theorem. Third law of thermodynamics.	Electrolytic and Galvanic cells, reversible & Irreversible cells, conventional Representation of electrochemical cells. EMF of cell and its measurement. Revision & Minor Test.	Weston standard cell, activity and activity coefficients. Calculation of thermodynamic quantities of cell reaction (G, H & K). Types of reversible electrodes – metal metal ion gas electrode, metal –insoluble salt- anion and redox electrodes.	Electrode Reactions, Nernst equations, derivation of cell EMF and single electrode potential.
March	Standard Hydrogen electrode, reference electrodes, standard electrodes potential, sign conventions, electrochemical series and its applications.	Concentration cells with and without transference, liquid junction potential.	Application of EMF measurement i.e. valency of ions, solubility product, activity coefficient.	Revision & Minor Test.

Department:- Chemistry Physical Chemistry

April	Potentiometric titration (acid- base and redox).	Determination of pH using Hydrogen electrode, Quinhydrone electrode and glass electrode by potentiometric methods.	Revision & Minor Test.	
-------	---	---	------------------------	--

Department:- Chemistry Physical Chemistry Class:- B.Sc IVth sem (Hons)

Month	1st Week	2nd Week	3rd Week	4th Week
January	Second law of thermodynamics. Need of the law, different definitions of the law, Carnot Cycle and its efficiency. Carnot theorem, Thermodynamic scale of temperature.	Concept of entropy, entropy as a state function of V and T, entropy as a function of P and T. Entropy change in physical processes. Clausius inequality, Entropy as criteria of spontaneity and equilibrium. Entropy change in ideal gases and mixing of gases	work function, Gibb,s free energy function. Gibbs function (G) and Helmholtz function (A) as thermodynamic function, Criteria of spontaneity of reversible processes in terms of enthalpy change, entropy change, work function and free energy function.	Variation of G and A with P,V and T. Gibb Helmholtz equation and its application, Clausius- clapeyron equation Nernst heat theorem. Third law of thermodynamics and its applications.
February	Partial molar quantities. Chemical potential. Gibb's Duhem equation. Gibb,s adsorption equation and its application, variation of chemical potential with temperature and pressure.	Redox reactions, electrolytic and galvanic cells. Reversible and irreversible cells reversible electrodes, types of reversible electrodes. Revision & Minor Test.	Metal electrodes, gas metal electrode, metal insoluble salt on ions and redox electrodes. Electrode reactions, cell voltage, function of salt bridge, electrode potential and its determination.	Standard hydrogen electrode, reference electrode, standard cell, sign convention.
March	Electrochemical series and its significance. Nernst equation for a reversible electrode and cell. Calculation of thermodynamic quantities of a cell reaction 'G, 'H and K.	Polarization over potential and hydrogen over voltage. Definition of pH. Determination of pH using hydrogen, quinhydron and glass electrode by potentiometric method.	Experimental methods of chemical kinetics: conductometric , potentiometric , optical method ,polarimetery and spectrophotometer.	Theories of reaction rates, effect of temperature on rate of reaction. Simple collision theory based upon transition state, hard sphere model theory (equilibrium hypothesis).

April	Buffers solution, Buffer action, Henderson - Hazel equation. Hydrolysis of salts, corrosion, types, theories and methods of controlling	Expression for the rate constants based on equilibrium constant their thermodynamic aspect	Revision & Minor Test.	Revision & Minor Test.
	it.	, .		

Class:- B.Sc IVth sem (Hons)

Month	1st Week	2nd Week	3rd Week	4th Week
January	Planck's law, heat capacity of solids, Bohr's model of hydrogen atom (derivation excluded) and its defects. Compton effect.	Molecular orbital theory, basic idea, criteria for forming molecular orbital from atomic orbitals. Construction of molecular orbital by linear combination of atomic orbital ,- H ₂ ion.	Calculation of energy levels from wave function, physical picture of bonding and antibonding wave function.	Concept of π , π^* orbitals and their characteristics. Hybrid orbital (Sp. Sp ₂ and Sp ₃ .).
February	Revision & Minor Test.	Calculation of co-efficients of atomic orbitals used in these hybrid orbitals.	Introduction of valence bond model of H ₂ , Comparison of molecular orbital and valence bond Model.	HomogeneousandHeterogeneouscatalysis,Enzyme catalysis.Revision & Minor Test.
March	Theory of catalysis - Intermediate compound formation theory, adsorption theory.	General characteristics of catalysis, positive catalysis, negative catalysis, autocatalysis, shape selective catalysis.	Classification of chromatographic methods, principle of differential migration, nature of differential migration.	Adsorption phenomenon, nature of adsorbent, solvent system. Rf values, application.
April	Basic principle of partition, paper, column, thin layer liquid-liquid partition and high performance.	Liquid chromatography, paper & column, thin layer liquid-liquid partition and high- performance liquid chromatography	Revision & Minor Test.	

Department:- Chemistry Physical Chemistry

Department:- Chemistry Physical Chemistry

Class:- B.Sc VIth sem (Pass Course)

i nysicui Cheinisti y				
Month	1st Week	2nd Week	3rd Week	4th Week
January	Concept of potential energy curves for bonding and antibonding molecular orbitals, qualitative description of selection rules.	Franck-Condon principle.	Qualitative description of sigma and pie and n molecular orbital (MO) their energy level and respective transitions.	Interaction of radiation with matter, the difference between thermal and photochemical processes. Laws of photochemistry: Grotthus- Drapper law, Stark-Einstein law (law of photochemical equivalence)
February	Jablonski diagram depicting various processes occurring in the excited state, qualitative description of fluorescence, phosphorescence.	Non-radiative processes (internal conversion, intersystem crossing), quantum yield. Revision & Minor Test.	Photosensitized reactions-energy transfer processes (simple examples). Ideal and non-ideal solutions.	Methods of expressing concentrations of solutions, activity and activity coefficient. Dilute solution,Colligative properties, Raolut's law, relative lowering of vapour pressure, molelcular weight determination.
March	Osmosis law of osmotic pressure and its measurement, determination of molecular weight from osmotic pressure. Elevation of boiling point and depression of freezing point.	Thermodynamic derivation of relation between molecular weight and elevation in boiling point and depression in freezing point. Experimental methods for determining various colligative properties.	Abnormal molar mass, degree of dissociation and association of solutes.	Statement and meaning of the terms—phase component and degree of freedom.

	Thermodynamic derivation of		
April	Gibbs phase rule, phase equilibria Phase of of one component system– compone Example–water and Sulphur liquid equ	equilibria of two- Simple eutectic Example Pb-Ag ent systems solid- system, desilerisation of lead uilibria. Revision & Minor Test.	
	systems.		

Month	Week-1	Week-2	Week-3	Week-4
JANUARY	PRACTICAL EXAMS	s-block elements, Comparative	Comparative study, diagonal	Theory of Precipitation
		study, diagonal relationships	relationships	ASSIGNMENT-1
		Electrolytic conduction, factors	specific, conductance, molar	Arrhenius theory of ionization.
		affecting electrolytic conduction	conductance, equivalent	Ostwald's Dilution Law. Debye- Huckel
			conductance and relation among	 Onsager's equation for strong
		Second law of thermodynamics	them	electrolytes
		Carnot's cycles and its	Concept of entropy	
		Thermodynamics scale of		mixing of gases
		temperature		
FEBRUARY	Chemistry of analysis of	Chemistry of interferences of	Chemistry of interferences of acid	Chemistry of interferences of acid
	various groups of basic	acid radicals including their	radicals including their removal in	radicals including their removal in the
	and acidic radicals,	removal in the analysis of basic	the analysis of basic radicals.	analysis of basic radicals.
	identification of acid		radicals including their removal in	Henderson – Hazel equation Buffer
	radicals in typical	ASSIGNMENT 2	the analysis of basic radicals.	mechanism of buffer action
	combinations.			
		Application of Kohlarausch's	conductometric titrations.	Variation of G and A with P, V and T
	Kohlarausch's Law,	Law in calculation of	Definition of pH and pKa, Buffer	
		electrolytes at infinite diloution	solution, Buffer action,	
	of viscosity temperature	Applications of conductivity		
	& pressure on it.	measurements		
		Gibbs and Helmholtz functions;		

Class: Inorganic Chem. (BSc I Chem. (H); Physical Chem. (BSc I MED (B), BSc I BT, BSc II NM (A) Department:- CHEMISTRY

	Third law of thermodynamics: Nernst heat theorem			
MARCH	Chemistry of fullereness, carbides	fluorocarbons, silicates	tetrasulphur tetranitride, basic properties of halogens, interbalogens and polyhalides	Test 1
	Rate of reaction, rate	and third order reaction	internalogens and polynalides.	
	equation, factors		Half life period of a reaction	sign conventions, electrochemical
	influencing the rate of a reaction	Types of reversible electrodes	Standard Hydrogen electrode,	series and its applications.
	Electrolytic and Galvanic		electrodes potential,	
	cells – reversible &			
	Irreversible cells ,			
	representation of			
	electrochemical cells			
APRIL	tetrasulphur tetranitride, basic properties of	chemistry of xenon	ASSIGNMENT-3	chemistry of xenon
	halogens, interhalogens	Theories of reaction rate –	potentiometric titration (acid- base	Transition state theory of Bimolecular
	and polynalides.	unimolecular and bimolecular		reactions.
		collision.		potentiometric titration (acid- base and
	Arrhenius equation.			redox)
		application of EMF		
	liquid junction potential	measurement		